Six and eleven hole beads, in two NiZn materials, are available both as beads (product class 26) and wound with tinned copper wire in several winding configurations (product class 29).

- Parts with a “1” as the last digit of the part number are supplied bulk packed. Wound beads with part numbers 29--666631 and 29--666651 can be supplied radially taped and reeled per IEC 60286-1 and EIA 468-B standards. For these taped and reeled wound beads the last digit of the part number is a “4”. Taped and reeled wound beads are supplied 500 pieces on a 13” reel.

- Wire used for winding is oxygen free high conductivity copper with 100% matte tin plating over a nickel undercoating.

- Beads are controlled for impedance limits only. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%. The 44 material beads and wound beads are tested on the 4193A Vector Impedance Meter. The 61 material parts on the 4291A RF Impedance Analyzer.

- Recommended storage temperature and operating temperature is -55 °C to 125 °C

- Performance curves for these suppression components are on our web site.

- For any wound bead requirement not listed in here, please contact our customer service group for availability and pricing.

- Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1 = bulk packed, 4 = taped and reeled.
Beads

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Fig.</th>
<th>Turns Tested</th>
<th>A (Ω)</th>
<th>B (Ω)</th>
<th>C (Ω)</th>
<th>D (Ω)</th>
<th>Wt. (g)</th>
<th>Impedance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 MHz⁺</td>
</tr>
<tr>
<td>2644666611</td>
<td>1</td>
<td>1½</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.20</td>
<td>213</td>
</tr>
<tr>
<td>2661666611</td>
<td>1</td>
<td>1½</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.20</td>
<td>_</td>
</tr>
<tr>
<td>2647777711</td>
<td>2</td>
<td>2½</td>
<td>10.00 ±0.25 0.394</td>
<td>0.90 ±0.15 0.038</td>
<td>10.00 ±0.25 0.394</td>
<td>7.50 Ref 0.295 Ref</td>
<td>3.30</td>
<td>375</td>
</tr>
</tbody>
</table>

Broadband Frequencies 1-200 MHz (44 material)

<table>
<thead>
<tr>
<th>Row #</th>
<th>Part Number</th>
<th>Fig.</th>
<th>A (Ω)</th>
<th>B (Ω)</th>
<th>C (Ω)</th>
<th>D (Ω)</th>
<th>Wt. (g)</th>
<th>Pitch (mm)</th>
<th>Parts 13" Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2944666661</td>
<td>1-1</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2)</td>
<td>2944666651</td>
<td>1-2</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(3)</td>
<td>2944666654</td>
<td>1-2</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.30</td>
<td>12.7</td>
<td>500</td>
</tr>
<tr>
<td>(4)</td>
<td>2944666671</td>
<td>1-3</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(5)</td>
<td>2944666681</td>
<td>1-4</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(6)</td>
<td>2944666631</td>
<td>1-5</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(7)</td>
<td>2944666634</td>
<td>1-5</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 ±0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>12.7</td>
<td>500</td>
</tr>
<tr>
<td>(8)</td>
<td>2944777721</td>
<td>2-1</td>
<td>10.00 ±0.25 0.394</td>
<td>0.90 ±0.15 0.038</td>
<td>10.00 ±0.25 0.394</td>
<td>7.50 Ref 0.295 Ref</td>
<td>3.80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(9)</td>
<td>2944777721</td>
<td>2-2</td>
<td>10.00 ±0.25 0.394</td>
<td>0.90 ±0.15 0.038</td>
<td>10.00 ±0.25 0.394</td>
<td>7.50 Ref 0.295 Ref</td>
<td>3.90</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table Continued ...

<table>
<thead>
<tr>
<th>Row #</th>
<th>Part Number</th>
<th>Turns</th>
<th>Wire Size</th>
<th>1st Wire Length</th>
<th>2nd Wire Length</th>
<th>Impedance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2944666661</td>
<td>1½</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>45</td>
</tr>
<tr>
<td>(2)</td>
<td>2944666651</td>
<td>2</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>58</td>
</tr>
<tr>
<td>(3)</td>
<td>2944666654</td>
<td>2</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>58</td>
</tr>
<tr>
<td>(4)</td>
<td>2944666671</td>
<td>2½</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>87</td>
</tr>
<tr>
<td>(5)</td>
<td>2944666681</td>
<td>2 x 1½</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>28.0 ±3.0 1.102</td>
<td>45</td>
</tr>
<tr>
<td>(6)</td>
<td>2944666631</td>
<td>3</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>115</td>
</tr>
</tbody>
</table>
Table Continued ...

<table>
<thead>
<tr>
<th>Row #</th>
<th>Part Number</th>
<th>Turn(s)</th>
<th>Wire Size</th>
<th>1st Wire Length</th>
<th>2nd Wire Length</th>
<th>1 MHz+</th>
<th>10 MHz+</th>
<th>50 MHz+</th>
<th>100 MHz+</th>
<th>200 MHz+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)</td>
<td>2944666634</td>
<td>3</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>115</td>
<td>500</td>
<td>1000</td>
<td>690</td>
<td>400</td>
</tr>
<tr>
<td>(8)</td>
<td>2944777741</td>
<td>4½</td>
<td>0.65 22 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>150</td>
<td>815</td>
<td>1250</td>
<td>500</td>
<td>375</td>
</tr>
<tr>
<td>(9)</td>
<td>2944777721</td>
<td>2 x 2½</td>
<td>0.65 22 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>28.0 ±3.0 1.102</td>
<td>45</td>
<td>375</td>
<td>905</td>
<td>500</td>
<td>400</td>
</tr>
</tbody>
</table>

Higher Frequencies 50-500 MHz (61 material)

<table>
<thead>
<tr>
<th>Row #</th>
<th>Part Number</th>
<th>Fig.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Wt. (g)</th>
<th>Pitch Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>2961666661</td>
<td>1-1</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.30</td>
<td>-</td>
</tr>
<tr>
<td>(11)</td>
<td>2961666651</td>
<td>1-2</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.30</td>
<td>-</td>
</tr>
<tr>
<td>(12)</td>
<td>2961666654</td>
<td>1-2</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.30</td>
<td>12.7</td>
</tr>
<tr>
<td>(13)</td>
<td>2961666671</td>
<td>1-3</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>-</td>
</tr>
<tr>
<td>(14)</td>
<td>2961666681</td>
<td>1-4</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>-</td>
</tr>
<tr>
<td>(15)</td>
<td>2961666631</td>
<td>1-5</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>12.7</td>
</tr>
<tr>
<td>(16)</td>
<td>2961666634</td>
<td>1-5</td>
<td>6.00 ±0.25 0.236</td>
<td>0.75 +0.15 0.032</td>
<td>10.00 ±0.25 0.394</td>
<td>3.50 Ref 0.138 Ref</td>
<td>1.40</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Table Continued ...

<table>
<thead>
<tr>
<th>Row #</th>
<th>Part Number</th>
<th>Turn(s)</th>
<th>Wire Size</th>
<th>1st Wire Length</th>
<th>2nd Wire Length</th>
<th>10 MHz+</th>
<th>50 MHz+</th>
<th>100 MHz+</th>
<th>200 MHz+</th>
<th>400 MHz+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>2961666661</td>
<td>1½</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>75</td>
<td>280</td>
<td>380</td>
<td>510</td>
<td>600</td>
</tr>
<tr>
<td>(11)</td>
<td>2961666651</td>
<td>2</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>100</td>
<td>400</td>
<td>560</td>
<td>760</td>
<td>700</td>
</tr>
<tr>
<td>(12)</td>
<td>2961666654</td>
<td>2</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>100</td>
<td>400</td>
<td>560</td>
<td>760</td>
<td>700</td>
</tr>
<tr>
<td>(13)</td>
<td>2961666671</td>
<td>2½</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>150</td>
<td>560</td>
<td>780</td>
<td>960</td>
<td>600</td>
</tr>
<tr>
<td>(14)</td>
<td>2961666681</td>
<td>2 x 1½</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>28.0 ±3.0 1.102</td>
<td>75</td>
<td>280</td>
<td>380</td>
<td>510</td>
<td>600</td>
</tr>
<tr>
<td>(15)</td>
<td>2961666631</td>
<td>3</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>175</td>
<td>700</td>
<td>1000</td>
<td>1100</td>
<td>625</td>
</tr>
<tr>
<td>(16)</td>
<td>2961666634</td>
<td>3</td>
<td>0.53 24 AWG</td>
<td>38.0 ±3.0 1.500</td>
<td>_</td>
<td>175</td>
<td>700</td>
<td>1000</td>
<td>1100</td>
<td>625</td>
</tr>
</tbody>
</table>